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by
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ABSTRACT

By generalizing a trivial problem in estimation theory, some

interesting results have been obtained for a class of pulse amplitude

modulation (PAM) communication channels. In particular, we consider

a linear channel with memory perturbed by additive noise which is uncorrelated

with the signal statistics. It is shown that, for specified second-order

statistics and a mean square error criterion, the Bayes estimation rule for

the specific case of zero-mean Gaussian signal and noise statistics is also

both the best linear estimation rule and the minimax estimation rule. This

fact is used in the theoretical design of sampled-data and continuous time

receivers for such PAM systems. In the continuous time case with an

infinite observation interval and stationary noise statistics, the receiver

thus designed agrees with the optimum linear receiver previously derived

for this case by Tufts [2] using a very different approach; the present

analysis shows that Tufts's linear receiver is, therefore, also the best

nonlinear receiver in the minimax sense.
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In this report we consider the consequences of the following trivial

estimation problem.

Problem 1:

The real random variable a has the Gaussian probability density

2
1 "Z "

Pl ( CO 1 e ; -oo < a <co. (1)

The real random variable y is statistically independent of a and has the

Gaussian probability density

P 2 (y)= e , -oo< y <oo. (2)

The sum random variable x = a+y is observed. It is desired to find that

estimation rule a (x) which minimizes the mean square error D between

a(x) and a . This mean square error is defined by:
00oCo 00 00

D((-= =[ (a+Y)] 2 P)(aaP 2(y)ddy r[(X) -]2 p,(a)p 2 (x-)•

-00 -00 -00-00 (3)

Solution:

It is well known ([1], p. 190) that the optimum estimate al (x) is the

mean of a ,conditional upon having observed x , namely
0o

cc S aP 2 (x-a)p, (a)da

-00
G1 x) = duP(alk) =0 (4)

0P2 (x-a)pl (&)da

-00
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Substituting (1) and (2) into (4) and performing the indicated computations

(See Appendix I) yields the result:

CL(x) x (5)b 2 + cr2

The resultant minimum value of D found upon substitution of al (x) from

(5) into (3) is (See Appendix I):

b22

b2 (6)
1 b2 +

We now introduce some terminology and notation which will be

employed below in discussing other estimation problems related to Problem 1.

The expected value of a function f (a, y) of two real random variables

with joint density p (a, y) will be denoted by
00 00

E p[f (a,y0] = f (a, y)p (a,y) dady. (7)

-00 -O

We shall denote by W the class of all joint probability densities

p ( a, y) which satisfy the following requirements

E (a 2 ) = b 2  (8a)

E (ay) = 0 (8b)
p

Ep (y 2 ) =o-2 (8c)
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Problem 2:

It is known that the joint density of a and y is an element of W.

The sum random variable x = a +y is observed, and it is required that the

estimation rule a(x) be linear, i. e. , the only permissible estimation rules

are of the form a(x) = kx . We seek that estimation rule ^2 (x) of this

form which minimizes the mean square error D defined by

D(^, p) = Ep [(x)- 0 ]2 (9)

Solution:

First note that if a(x) is linear, then D(a, p) is independent of

which p cW is used to compute it, because

D (kx, p) = Ep f[k(a+y)-a]21 = Ep[ (k- 1)2 a 2 +E [2k(k- l)ay] + Ep [k2 y ,

from which by use of (8) we obtain

D(kx, p) = (k-i)2 b2 + k 2 2 = f(k) . (10)

Setting f' (k) = 0 yields k = b2/b +r 2 , while f" (k) = 2. 2 > 0 insures a

minimum. Accordingly, a 2 (x) = 1 (x)

Alternatively, one could argue as follows. Since the value of

A
D (a, p) is independent of p c W when a is linear, we can compute it

using any p cW whatsoever. In particular, suppose we were to use

"P(a, y) = P (a) p 2 (y) (11)

where p1 (a) and p2 (y) are given by Eqs. (1) and (2), respectively;

one easily verifies that p(a, y) e W. Now Problem I tells us that for any

Q(x) and, hence, a fortiori, for any linear a(x, we have
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D(a^, ) > D D (12)

Since a I is itself linear, we may conclude that a2 (x) = 'a1 (x)

The alternative method of solution of Problem 2 proves useful in

solving the following minimax estimation problem.

Problem 3:

It is desired to find the estimation rule a (x) which minimizes the

maximum mean square error that occurs when p (a, y) is varied over W,

i.e., our optimum estimate a3 (x) is defined by the requirement

(VC(x))(sup I(a, P) u D(Q 3 )p)) (13)

Solution:

The following argument establishes that 'a3 (x) = ^1 (x) . Since

a, (x) is linear, we know that D( I , p) = const. = D1 for all pew and,

therefore,

sup D( C p) = D 1  (14)

On the other hand, we know from Problem 1 that A1 (x) yields the least

value of D when p = p. Accordingly, for all a (x) we have

sup () supDe D(C^, p) > D (^a,") > D a, P) = E (D ~p .a1

Comparing (15) with (13) shows that Q3 (x) = aI (x)

In surnmary then, we see that in the space W of joint probability

densities as defined by (8), the least favorable distribution with respect
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to a mean square error criterion is ^( a, y) of equation (11) in which a

and y are statistically independent, zero mean and Gaussian. Since a (x),

the optimum estimation rule for (a, y) and a mean square error criterion,

is linear in x , we have seen that it is in fact the solution to all three of the

estimation problems we have considered.

We now employ the knowledge gained from the above problems in order

to solve some estimation problems regarding the pulse amplitude modulation

system depicted in Fig. 1.

Transmitter

s k Dispersive U(t)d. ec eive aCIa ~ ) -rRcie --oa= .
-- -- Channel -

44. h (t)

Figure 1: Block Diagram of PAM Communication System

A
*We could have defined W somewhat more broadly and still had a (x)

as the minimax solution. In particular, we could have replaced (8a by

E p(a 2 ) b and (8c) by E p(y 2) <a 2, and we could have permitted

probability distributions P(a, y) which, because of discrete concentrations
of probability, possess no density p(a, y).
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N

The transmitter forms the sum aks (t - k ) from the random vector a,
k--I

the known vector r and the known function s (t). This transmitter output

is then sent over a linear, dispersive channel characterized by an impulse

response h(t). The receiver input x(t) is an additive combination of the

channel response u(t) to the transmitter output and a sample function y (t)

of a random process. The receiver operates on the noisy waveform x(t)

A
to produce the vector a of estimates of the respective components of a

The design of the receiver may, therefore, be viewed as a problem in statistical

estimation theory. We start with a relatively trivial problem analogous to Problem 1.

Problem 4:

Suppose that the message vector a has a zero-mean Gaussian

probability density of the form N N

1 aT 0- 1 i a-- "a- a " LJZ i 13 i13

p(2)= e 2= i=1 j=l (16)
21 0N/2 1_.11/2 ( 2%)Ni 2  le. 1/2

In Eq. (16), $i:1 represents the i-j t h element of the inverse of the auto-

correlation matrix 0 . Further suppose that y ( t) is a sample function of

a zero mean, possibly nonstationary Gaussian random process statistically

independent of a and having the autocorrelation function y( t, s ) = y (t ) y (s).

The receiver input x(t) is observed at M distinct time instants

t1 V t 2 , ... , tM ; the observed random variables, therefore, constitute
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an M-dimensional column vector x with components xm = x(tn);

M = 1, 2,..., M. We seek that estimation rule d (x) which minimizes the

A
mean square error between a and a defined as

N

D= [S(x)- s] 2 = . 5dacdx[a i (x) - ai] 2p(a)q(xj a ) (17)
i= 1

The integration in Eq. (17) extends over the entire N+M dimensional space

of which dadx =dx I  ... daNdxl ... dxM is a differential element of

volume, and q(x I a) is the M-dimensional probability density of x

for-a given message vector a

Solution:

The signal component u (t) of the receiver input waveform x (t)

is given by

N 0o

ult)= a r(t - '-),where r(t) = Ss(t-() h() de . (18)

In order to write down q (x a _) explicitly, we introduce the following notation.

Let r be the M x M autocorrelation matrix whose m-n t h element is

7 (tin, t n ) = 7rn, and let Ymn be the m-n element of r'. Let

N

u(a) be the column vector with components u(t m ) = a jr(tm-rj) =

N j=l

Cmjaj= um (a); m = 1,20...V M. We then may write
j=l
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M M
(1 T_ u (a)_- 1 -1

-2 -u ) Y2 Ymn I m m -][n- n(
q(ls) = • e m=n=l

- (210)NIZ i/ 2  M(2 2MiZ Ii/2

(19)
It is a standard result of estimation theory ([ll,pp. 188-190) that the

optimum estimation rule is the mean of a conditional upon having observed
th

x, the i component of which is

Ci p(a) q(xIa) d_
Gi (x) (20)q ix IS) p (a) da

The integrations indicated in Eq. (20) are performed in Appendix II and

yield the result

M
A = xm i=1, 2v..., N (21)

Ci(x ) =i
m=l

The constants 0i. appearing in (21) are defined in Appendix II.

The most important property of the estimation rule specified by (21)

is that, like the optimum estimate a, (x) of Problems 1, 2, and 3, it is

linear in the observed random variables xm

We now introduce some terminology and notation which will be

employed below in discussing other estimation problems related to Problem 4.
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The expected value of a function f (a, y) of two real random vectors

with joint probability density p (aI y) will be denoted by

E~ [f (C, Y)]=$ f (a, y ) p (a~, y)ddy. (22)

We shall denote by V the class of (M+ N) dimensional joint

probability densities p (a, y) which satisfy the following requirements

Ep(a ak) = $jk . (22a)

Ep(a m)y M O j,k=1,2,...,N; m,n= 1, 2,..., M. (22b)

Ep (ymYn)= 1'mn (22c)

Problem 5:

Let a be the N-component random message vector and let y be

M-component random vector whose elements are the noise samples

y(tm) = Ym It is known that p (a, y)e V. The M-component random vector

x whose elements are the receiver input samples x(t) = x m  is observed,

and it is required that the estimation rule 2(x)be linear, i.e., the only

permissible estimation rules are of the form A (x) = Kx, where K is an

Nx M rectangular matrix. We seek that estimation rule of this form which

minimizes the mean square error D defined by

N

D(AP) = [(X)L]21 i)ai(2C:L a 1(21
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Solution:

For linear ,(x) we find that D (a, p) is independent of which

p eV is used to compute it, since we have

N M 1N 2
D (Kx, p) E  k. x -4 a. km [Ym+U m (a ) ] -D(I_ p) = Pm 1m i

I=1 1 _ J

(Kxp) Ep -. cm .a.

i=l Mlm1 1 j j

D (K?, = iil E  kim m k km c mJ aj - (24)
1 ~ ~ j=l (m=l

When the squaring operation indicated in (24) is carried out and the

expectation operation is commuted with the summations, it becomes clear

from (22) that D (Kx, p) is independent of p c V. It then follows by

reasoning directly analogous to the alternative method of solution of Problem

2 that the desired estimation rule is that already specified by Eq. (21) as the

solution to Problem 4, i. e. , the optimum estimation rule has K = =i)

the distribution analogous to (a, y) of Eq. (11) is

I [T I  +T r-1
_ _ _ ____

P= M N 1 "
rl 1 I l Z
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Problem 6:

AA
It is desired to find that estimation rule (x) which minimizes the

maximum assumed by D(a, p) as p is varied over V.

Solution:

In complete analogy to Problem 3, we see that Eq. (21) specifies the

desired estimation rule.

In summary, the common solution of Problems 4, 5, and 6 is the

optimum sampled-data mean square error receiver for the PAM system of

Fig. 1, where the term "optimum" is, of course, to be construed with

regard to the statistical knowledge assumed and the performance criteria

adopted in these problems.

Of particular interest is the limit of infinitely large M which

corresponds to the case of continuous observation of the receiver input.

Although it is possible to perform the limiting operations directly upon the

form of the 0km as derived in Appendix II, it proves somewhat more

convenient to revise our method of attack slightly. (For background material

regarding the analysis that follows, the reader is referred to [1], pp. 98-106.)

Suppose the receiver input x (t) is observed over the interval

T I < t < T 2 . The revision in our method consists of replacing the vector

x of receiver input samples with a vector of expansion coefficients of

x(t) in terms of a set of functions tffm (t )I orthonormal over (TI, T2 ).

In particular, we choose for our functions f =(t) the orthonormal solutions

of the Karhunen-Loeve integral equation
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T2

Xmfm(t) (t, )fm(S)ds ; T 1 <t<T 2 . (26)
T I

Thus, the elements of x are

T2

X = $ frm(t) x(t) dt . (27)
T I

Under the assumptions of Problem 4, the expansion coefficients x for a

fixed message vector a would be statistically independent Gaussian random

variables with variances Xm  and means IAm (a) defined by

Ume(a.)S frm(t) u(t)dt= f m(t)r(t-.rj)d )j j m(

T j=1 T j=l

Accordingly, in place of Eq. (19) we obtain

m=1 m
e1 (29)

(2 m

Therefore, the computations done in Appendix II remain applicable if we

replace c .by t and -1 by amn In the limit of infinite M
mj mj Ymn XTmthe vector x of expansion coefficients provides a representation of the

observed receiver input voltage x(t) , T I < t < T2 , which is sufficiently

accurate for most practical purposes. The components ai (x) of our

optimum estimate approach linear functionals of x (t), T < t < T2 , which
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A
will be denoted by Ci [x(t), T < t < T 2 ] = gi = 1, 2, ... , N. We now

characterize the gi more completely by examining the limiting behavior

of Eq. (21).

Let i (t) be the time function whose mth Karhunen-Loeve expansion

coefficient is im m , i.e., let
ODT 2

0i(t) =1 0 X.m f m (t); 0. mkm - f(t) i (t) dt. (30)
m=l T 1

Then, let z i (t) be the solution of the integral equation

0i tM = T 'Y( t, Pa) z i(s)ds ; T1 < t< T 2  .(31)

T

It follows that the ith component of our optimum estimate may be expressed

in the form

T 2DT 2  T 2

gi 0 ix I S fm(t)0i(t)dt Z 2dtfnm(t), ( t , 8) z(a)do

m=l m=l m T1  m=l m T1  T

T T T T
g 2 22 x 

2o

do= z~ T d i(S)l dtT ty n( t ) - do zi(T m TY (st)f mtM dt

T1 T mT T

do 5 dz(S) I x mf m(S) = 5 z(s) x (a) do (32)
T I M1lT
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In deriving Eq. (32), use has been made of the fact that y(t, s) is a

symmetric kernel. The equation indicates that gi may be formed by passing

x (t) through a linear, time-invariant filter with impulse response wi(t )

given by

zi(T-t) ; -T +T<t<-T I +T

wi(t) = (33)
0 ; el sewhe re

The filter output at time T then will be

O -TI+T T2

5x (T,r)w (,r)dr = Sx(T .T)zi(TT")dr="S zi(s)x(s)do = gi' (34)

-00 -T2+T .  T
2 .1

It appears difficult to extend the general analysis beyond this point.

In the specific case in which T 1 -o -co and T 2 -8 O . an explicit solution for

w (t) can be obtained if the noise process is wide sense stationary. The

solution for this case was found by Tufts [2] using a very different approach .

Tufts derived the mean square error optimum linear receiver under the

assumption that the only statistical knowledge available to the receiver

designer was the message vector autocorrelation matrix 0 and the noise

autocorrelation function 'y(t, s,) = V (t - a ) ; signal and noise were assumed

additive and independent. Calculus of variations yielded an integral equation

the aolution of which was the transfer function Wi( f ) of the optimum

receiver filter, namely
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Wi(f) = R d(i, k) k (35)

n=1

where Wi(f) = . wi(t) e-J21ft dt R(f) = 5r(t)e-j2zft dt
-CO -CO

and *(f) = 54(7) e dr Equation (35) represents a "matched filter"

*CO
R(f) independent of i followed by a delay line with N taps spaced like the

transmission instants rk and weighted by gain coefficients which vary with i

The optimum estimate gi is the sum of the weighted tap outputs of time T

(see Fig. 2).

Matched Filters Delay Line with N Taps Giving Delays T k =

x (t) R7TT TMN. k =

TrN TrN. 1  T-Tk T-T 2  T-, 1

d(i, N) d(i,N-1 d(i, k) d(i, 2) d(i, 1)

00 o0 a

T

Fig.2-Optimum Receiver for Stationary Noise and an Infinite Observation Interval
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In Appendix III, Eq. (30) is solved for T, -. -00, T2 - + co and

stationary noise, and the solution is shown to be equivalent to Tufts' solution

as given by (35) and Fig. 2. The present analysis shows that the resultant

receiver is not only the best linear one, but also the best nonlinear receiver

in the minimax sense. For either of these interpretations of the receiver, the

joint distribution p[a, y (t)] of signal and noise has been assumed to belong

to the continuous analog of V , i.e., it is known that for all j, k, = 1, 2,..., N

and for all tl, t 2 C (-co, cOD)

Ep (a ak) -jk (36a)

Ep ajy(t ) = 0 (36b)

E y (tl ) y (Y ] = ly(tl V t 2) (360)

Conclusion:

It has been shown that in mean square error estimation problems

with additive, uncorrelated noise and known second-order statistics, the Bayes

estimation rule for the specific case of statistically independent, zero-mean.

Gaussian signal and noise statistics is also both the best linear estimation

rule and the best minimax estimation rule. This fact has been used to

design optimum sampled-data and continuous time receivers for a practical

PAM communication system. L the continuous time case with an infinite

observation interval and stationary noise statistics, the receiver thus designed

agrees with the optimum linear receiver previously derived for this case
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by Tufts [2] using a very different approach; the present analysis shows that

Tufts's linear receiver is, therefore, also the best nonlinear minimax

receiver.

The above theory could be employed as the mathematical basis for an

investigation of the extent of degradation in system performance suffered by

adopting a sampled data as opposed to a continuous time receiver. It is

also hoped that the above constitutes a useful contribution to the complex field

of the interrelations between different system performance criteria.
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APPENDIX I

00 + C 2 31 a 2  2Cix + a2

SP(x-L)p()da a 5ceb a-2db

000

a0 W 5e0

-00Ce - b do. be da

-00 -00

r i ro22x + CL27 2 - x 2

A 1 ()=24 L 2 I 2 by 2 d Z-Ql W= 4 MEfn Zdbr) = 4w f ~ 2

-00-00-00-0

( 2 d[ 2 2b2

b~ 2 (b7 w- b2

D 0-O -O -00~
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APPENDIX II

In what follows, omitted exponents in the denominator equal those in

the numerator.

CLk(X) = fd [-N N MM " N N "rkj

alqxl-P(ad d-keNN jk ZjZk Y mn(Xr -  aj ) (x nk x

=___ _ d __=_k=l m=l n=l =l k=l k
q(xE a)p(S_)d. da exp 1

ak(X) =
"M M N N N MMk]

Sd aakexp 12 L xm 7nn cnk%17 I (+jk +1 cmj mnlCnk) ajak

1 -m=l n=l k=l =I k=1 m=l n=l

dj-" exP

Let C be the MxN rectangular matrix whose n-kth element is Cnk , and

consider the matrix _-1 + CT r- 1 C = A . Since both 0 and r are symmetric

and strictly positive definite, one easily verifies that A is, also. We perform

a transformation to the principal axes of the quadratic form in the exponent

by defining the new coordinates a according to the matrix relation a = A ,

where A = (ajk) is the matrix of normalized eigenvectors of A. Denoting

the eigenvalues of A by v ; I = 1, , ... , N, we obtain
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Sda( ai~, exp {T r- CAE-1 ~2

.aexp

T =T -1 ADefining IT x r ' CA, we can express a ,(x) in the form

N . ,e Clt f2dN a lC
ai.(x) = ail 71

1=1 Se Cl of " I f2 do } 1=1

M M N

Since C,= X ' Cn a, this becomes
m=l n=1 k=1

M M N N

ai(x) I imm r im= 'mn Vm=1 n=1 k=1 11
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APPENDIX III 6
If we make the replacements c . = and -1 = n as

mj mj -mn T
discussed after Eq. (29), the expression for ir as given at the end

of Appendix II becomes

a aitak i a akiinm mn- gnk V" T= 9mk '

m 1= in mI'
n=l m k=l 1= 1 k=l I=I

Combining this with Eq. (30) and the definition of gmk from Eq. (28), we

obtain

T 2  N N N T2 N

X in = fm(t) 0i(t) dt = mk> ai ak1 = f fm(t) r(t' k)dt a iaki
m I i S II m ,mrkV 1T 1  k=l 1=1 k=l T1  1=1

This may be rearrange in the form

T 2  NN 

fS M t) Mt- 7 r (t-7- dt = 0

T 1 10 t=j1j=0

From the completeness of the fm (t) on (T1 , T 2 ) we may conclude that

N N
0it= M a ip k  r (t-'rk) ;TI<t<T 2 .

k=l1i=l 
I

Writing -V (t, s) = V/ (t -a) because the noise is stationary, and letting

TI- co and T 2 -P 00, we may write the integral equation (31) in the form

N N ai iO

7, V r (t -'r k ) S * (t - )z i ( o• )do ; t e (-co, co).

k=1 1=1 -00
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Fourier transforming then yields

N N a k R ) •jZ fk = (f) Z.(f)

VI

k=l R=1
* j 2ifT*

Since W (f) = Z. (f) e from (33), and since 1P (f) = * (f), the

solution for the transfer function of the filter to be sampled at t = T in

order to obtain gi is

W f)= ( f ) N ( N aiafki ) ef(Tk-T)

k= 1 I= I

Accordingly, the optimum receiver is a matched filter followed by a tapped

delay line, agreeing with Tufts's result as given in Eq. (35). The tap gain

N

coefficients are given by a , and it remains to establish that these
V= I

are equivalent to the d(i,k) given by Tufts. Toward this end, let us recall

from Appendix II that A is the matrix of normalized eigenvectors of A

so that we have A A , and we may write

0 1I/)
VA 2A A T..I A V

0 vN I / N
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N

Accordingly, the i-kth element of A7 1  is a il aki , which shows that
1 V1

the tap gains for the optimum receiver prescribed by the present theory are

the elements of the inverse of A = 0-1 + cTr -1 C. On the other hand,

temporarily adopting Tufts's notation, we obtain by combining his Eqs. (7)

and (15) the following representation for the matrix D of his tap gain

coefficients d(i,k)

D= M-C= M-MQ (M +Q) "1 = M- [M- (M +Q) " ] = (M "1 +Q)-1

Accordingly, TuftsIs tap gains are the elements of the inverse of MI+ 1 Q

Since his M is our 0 , it only remains to show that his matrix Q is the

same as our matrix C T I  C. Now the i-kth element of Q is defined,

in our notation, as
OD 2 f(, i - k)R ( f)R*( f )~ r(-

q q (Ti- .k = RMfM e df .qik k)U

-OD

We now study the behavior of cTIr1 c in the limit T1 - -O, T 2 -*. 0, and
-1 mn

M-co. First, we have cmj =mj' and Tmn = X because we are
m t

using Karhunen-Loev.e expansion coefficients, so that the i-kth element of
c T r-"1C in T 2  T 2i (t r(tz i )d (T fr(t-r k )dt

M M M M Ti/YJt)
I immi_.____nk _ _ ____i__kT\T

m=l n=l m m=l m =l
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It is well known ([3], p. 93 or [4], p. 167) that the Fourier coefficients of a

stationary, Gaussian process become statistically independent in the limit of

an infinitely long expansion interval. Accordingly, in this limit we may use

as our orthonormal functions fM (t) the trigonometric functions

j~wmm

fm (t) e 12 ; m = 0, + 1, +2,
(T 2 - T 1 ) 1

Because these functions are complex, some minor complications arise.

In particular, defining bi =mi , we had in the real case that

m

CTr'IC = BTB ; in the complex case, this becomes crTr-c = BIB

where the "+" indicates conjugate transpose. Moreover, summations

over the index m now run from -M to M rather than from 1 to M. Our

expression for the i-kth element of CT r -1C ,therefore, becomes

S 1 f m*(t) r (t-Ti)dt)( ffm(t) r (t-'rk) dt)M T T 1

u n-M

Substituting the trigonometric functions, this assumes the form
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e 2'r t )r k 1 r2~ j 2 1 t ( t) e j 2,(m t

VrI -r r e TT71)d

m=-M m

We now take our limit in such a way that as (T 2 -T I) and m approach

infinity, their ratio f, representing frequency in cps, remains finite. In

this limit, T 1-T becomes the frequency differential df and X mbecomes

'V(f) ([4], p. 168). The above sum, therefore, tends to the integral

00d ei 2 1rf (,r -Tk) (t ej2rft d 0Me- j 27r ft d

Y 0* irrii

ODR(f) )R (f) e i1 T ,k f=qi
-7m)

This completes the demonstration of the fact that the present theory is in

accord with Tufts's earlier work.
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